The following constants are notated according to their Quantum Measurement Unit (QMU) expression, and their values are given in their Meter Kilogram Second (MKS) unit equivalent expression. The units are given in their Quantum Measurement Unit notation and expression.
Table of Constants and Units |
|||
Constants |
|||
Aether Mass |
Electron Mass |
Proton Mass |
Neutron Mass |
\(m_{a}=3.268\times 10^{15}kg\) | \(m_{e}=9.109\times 10^{-31}kg\) | \(m_{p}=1.673\times 10^{-27}kg\) | \(m_{n}=1.675\times 10^{-27}kg\) |
Aether
|
Electron
|
Proton
|
Neutron
|
\({e_{a}}^{2}=5.021\times 10^{8}coul^{2}\) | \({e_{emax}}^{2}=1.410\times 10^{-37}coul^{2}\) | \({e_{pmax}}^{2}=2.570\times 10^{-34}coul^{2}\) | \({e_{nmax}}^{2}=2.573\times 10^{-34}coul^{2}\) |
Aether
|
Electron
|
Proton
|
Neutron
|
\(a= 2.034\times 10^{-48}\) | \(\alpha=7.297\times 10^{-3}\) | \(p=3.974\times 10^{-6}\) | \(n=3.969\times 10^{-6}\) |
Electrostatic Charge |
Compton Wavelength |
Quantum Frequency |
Length Density Constant |
\(e^{2}=2.567\times 10^{-38}coul^{2}\) | \(\lambda_{C}=2.426\times 10^{-12}m\) | \(F_{q}=1.236\times 10^{20}Hz\) | \(ldns_{0}=1.347\times 10^{27}\frac{kg}{m}\) |
Aether Unit
|
Coulomb
|
Newton
|
Gforce |
\(A_{u}=1.419\times 10^{12}\frac{kg\cdot m^{3}}{sec^{2}\cdot coul^{2}}\) | \(k_{C}=8.988\times 10^{9}\frac{kg\cdot m^{3}}{sec^{2}\cdot coul^{2}}\) | \(G=6.673\times 10^{-11}\frac{m^{3}}{kg\cdot sec^{2}}\) | \(Gforce=1.210\times 10^{44}newton\) |
Speed of Photons |
Conductance Constant |
Permeability Constant |
Permittivity Constant |
\(c=2.998\times 10^{8}\frac{m}{sec}\) | \(Cd=2.112\times 10^{-4}\frac{sec\cdot coul^{2}}{kg\cdot m^{2}}\) | \(\mu_{0}=1.257\times 10^{-6}\frac{henry}{m}\) | \(\epsilon_{0}=8.854\times 10^{-12}\frac{farad}{m}\) |
Units |
Supportive Magnetic Field Units
Obverse Units |
||
1. Rotating Magnetic Field |
Magnetic Field |
Magnetic Volume |
\({A_u} = \frac{{{m_e} \cdot {\lambda _C}^3 \cdot {F_q}^2}}{{{e_{emax}}^2}}\) (also rmfd) |
\(mfld = \frac{{{m_e} \cdot {\lambda _C}^3 \cdot {F_q}}}{{{e_{emax}}^2}}\) | \(mvlm = \frac{{{m_e} \cdot {\lambda _C}^3}}{{{e_{emax}}^2}}\) |
Electric Potential |
Magnetic Flux |
Inductance |
\(potn = \frac{{{m_e} \cdot {\lambda _C}^2 \cdot {F_q}^2}}{{{e_{emax}}^2}}\) | \(mflx = \frac{{{m_e} \cdot {\lambda _C}^2 \cdot {F_q}}}{{{e_{emax}}^2}}\) | \(indc = \frac{{{m_e} \cdot {\lambda _C}^2}}{{{e_{emax}}^2}}\) |
1. Electric Field Strength |
1. Magnetic Momentum |
Permeability |
\(elfs = \frac{{{m_e} \cdot {\lambda _C} \cdot {F_q}^2}}{{{e_{emax}}^2}}\) | \(magr = \frac{{{m_e} \cdot {\lambda _C} \cdot {F_q}}}{{{e_{emax}}^2}}\) | \(perm = \frac{{{m_e} \cdot {\lambda _C}}}{{{e_{emax}}^2}}\) |
1. Diverging Electric Field |
Magnetic Flux Density |
1. Magnetism |
\(dvef = \frac{{{m_e} \cdot {F_q}^2}}{{{e_{emax}}^2}}\) (also stnc or spcd) |
\(mfxd = \frac{{{m_e} \cdot {F_q}}}{{{e_{emax}}^2}}\) | \(mchg = \frac{{{m_e}}}{{{e_{emax}}^2}}\) |
Inverse Units |
||
IMFU1 | IMFU2 |
Permittivity |
\(IMFU1 = \frac{{{e_{emax}}^2}}{{{m_e} \cdot {\lambda _C}^3}}\) | \(IMFU2 = \frac{{{e_{emax}}^2}}{{{m_e} \cdot {\lambda _C}^3 \cdot {F_q}}}\) | \(ptty = \frac{{{e_{emax}}^2}}{{{m_e} \cdot {\lambda _C}^3 \cdot {F_q}^2}}\) |
Reluctance |
Conductance |
Capacitance |
\(rlct = \frac{{{e_{emax}}^2}}{{{m_e} \cdot {\lambda _C}^2}}\) |
\(cond = \frac{{{e_{emax}}^2}}{{{m_e} \cdot {\lambda _C}^2 \cdot {F_q}}}\) |
\(capc = \frac{{{e_{emax}}^2}}{{{m_e} \cdot {\lambda _C}^2 \cdot {F_q}^2}}\) |
Curl |
Conductance Momentum |
IMFU9 |
\(curl = \frac{{{e_{emax}}^2}}{{{m_e} \cdot {\lambda _C}}}\) | \(cmom = \frac{{{e_{emax}}^2}}{{{m_e} \cdot {\lambda _C} \cdot {F_q}}}\) | \(IMFU9 = \frac{{{e_{emax}}^2}}{{{m_e} \cdot {\lambda _C} \cdot {F_q}^2}}\) |
Exposure |
Conductance Density |
IMFU12 |
\(expr = \frac{{{e_{emax}}^2}}{{{m_e}}}\) | \(cden = \frac{{{e_{emax}}^2}}{{{m_e} \cdot {F_q}}}\) | \(IMFU12 = \frac{{{e_{emax}}^2}}{{{m_e} \cdot {F_q}^2}}\) |
Opposing Magnetic Units
Obverse Units |
||
Friction |
Drag |
Vorticular Opposition |
\(fric = \frac{{{m_e} \cdot {\lambda _C}^3 \cdot {F_q}^2}}{{{e_{emax}}^4}}\) | \(drag = \frac{{{m_e} \cdot {\lambda _C}^3 \cdot {F_q}}}{{{e_{emax}}^4}}\) | \(vopp = \frac{{{m_e} \cdot {\lambda _C}^3}}{{{e_{emax}}^4}}\) |
Rub |
Resistance |
Angular Opposition |
\(rub = \frac{{{m_e} \cdot {\lambda _C}^2 \cdot {F_q}^2}}{{{e_{emax}}^4}}\) | \(resn = \frac{{{m_e} \cdot {\lambda _C}^2 \cdot {F_q}}}{{{e_{emax}}^4}}\) | \(aopp = \frac{{{m_e} \cdot {\lambda _C}^2}}{{{e_{emax}}^4}}\) |
Plow |
Skid |
Linear Opposition |
\(plow = \frac{{{m_e} \cdot {\lambda _C} \cdot {F_q}^2}}{{{e_{emax}}^4}}\) | \(skid = \frac{{{m_e} \cdot {\lambda _C} \cdot {F_q}}}{{{e_{emax}}^4}}\) | \(lopp = \frac{{{m_e} \cdot {\lambda _C}}}{{{e_{emax}}^4}}\) |
Hold |
Stop |
Magnetic Opposition |
\(hold = \frac{{{m_e} \cdot {F_q}^2}}{{{e_{emax}}^4}}\) | \(stop = \frac{{{m_e} \cdot {F_q}}}{{{e_{emax}}^4}}\) | \(mopp = \frac{{{m_e}}}{{{e_{emax}}^4}}\) |
Inverse Units |
||
IOMU1 | IOMU2 | IOMU3 |
\(IOMU1 = \frac{{4\pi \cdot {e_{emax}}^4}}{{{m_e} \cdot {\lambda _C}^3 \cdot {F_q}^2}}\) | \(IOMU2 = \frac{{{e_{emax}}^4}}{{{m_e} \cdot {\lambda _C}^3 \cdot {F_q}}}\) | \(IOMU3 = \frac{{{e_{emax}}^4}}{{{m_e} \cdot {\lambda _C}^3}}\) |
IOMU4 | Admittance | Magnetic Reluctance |
\(IOMU4 = \frac{{4\pi \cdot {e_{emax}}^4}}{{{m_e} \cdot {\lambda _C}^2 \cdot {F_q}^2}}\) | \(admt = \frac{{{e_{emax}}^4}}{{{m_e} \cdot {\lambda _C}^2 \cdot {F_q}}}\) | \(rlct = \frac{{{e_{emax}}^4}}{{{m_e} \cdot {\lambda _C}^2}}\) |
IOMU7 | IOMU8 | IOMU9 |
\(IOMU7 = \frac{{4\pi \cdot {e_{emax}}^4}}{{{m_e} \cdot {\lambda _C} \cdot {F_q}^2}}\) | \(IOMU8 = \frac{{{e_{emax}}^4}}{{{m_e} \cdot {\lambda _C} \cdot {F_q}}}\) | \(IOMU9 = \frac{{{e_{emax}}^4}}{{{m_e} \cdot {\lambda _C}}}\) |
IOMU10 | IOMU11 | IOMU12 |
\(IOMU10 = \frac{{{e_{emax}}^4}}{{{m_e} \cdot {F_q}^2}}\) | \(IOMU11 = \frac{{{e_{emax}}^4}}{{{m_e} \cdot {F_q}}}\) | \(IOMU11 = \frac{{{e_{emax}}^4}}{{{m_e}}}\) |
Electric Units A
Obverse Units |
|||
OEUA1 | OEUA2 | OEUA3 | OEUA4 |
\(OEUA1 = \frac{1}{{{e_{emax}}^2 \cdot {\lambda _C}^3 \cdot {F_q}^3}}\) | \(OEUA2 = \frac{1}{{{e_{emax}}^2 \cdot {\lambda _C}^3 \cdot {F_q}^2}}\) | \(OEUA3 = \frac{1}{{{e_{emax}}^2 \cdot {\lambda _C}^3 \cdot {F_q}}}\) | \(OEUA4 = \frac{1}{{{e_{emax}}^2 \cdot {\lambda _C}^3}}\) |
OEUA5 | OEUA6 | OEUA7 | OEUA8 |
\(OEUA5 = \frac{1}{{{e_{emax}}^2 \cdot {\lambda _C}^2 \cdot {F_q}^3}}\) | \(6OEUA = \frac{1}{{{e_{emax}}^2 \cdot {\lambda _C}^2 \cdot {F_q}^2}}\) | \(OEUA7 = \frac{1}{{{e_{emax}}^2 \cdot {\lambda _C}^2 \cdot {F_q}}}\) | \(OEUA8 = \frac{1}{{{e_{emax}}^2 \cdot {\lambda _C}^2}}\) |
OEUA9 | OEUA10 | OEUA11 | OEUA12 |
\(OEUA9 = \frac{1}{{{e_{emax}}^2 \cdot {\lambda _C} \cdot {F_q}^3}}\) | \(OEUA10 = \frac{1}{{{e_{emax}}^2 \cdot {\lambda _C} \cdot {F_q}^2}}\) | \(OEUA11 = \frac{1}{{{e_{emax}}^2 \cdot {\lambda _C} \cdot {F_q}}}\) | \(OEUA12 = \frac{1}{{{e_{emax}}^2 \cdot {\lambda _C}}}\) |
OEUA | OEUA | OEUA | OEUA |
\(OEUA13 = \frac{1}{{{e_{emax}}^2 \cdot {F_q}^3}}\) | \(OEUA14 = \frac{1}{{{e_{emax}}^2 \cdot {F_q}^2}}\) | \(OEUA15 = \frac{1}{{{e_{emax}}^2 \cdot {F_q}}}\) | \(OEUA16 = \frac{1}{{{e_{emax}}^2}}\) |
Inverse Units |
|||
IEUA1 |
IEUA2 | IEUA3 | Charge Volume |
\(IEUA1= {e_{emax}}^2 \cdot {\lambda _C}^3 \cdot {F_q}^3\) | \(IEUA2 = {e_{emax}}^2 \cdot {\lambda _C}^3 \cdot {F_q}^2\) | \(IEUA3 = {e_{emax}}^2 \cdot {\lambda _C}^3 \cdot {F_q}\) | \(chvm = {e_{emax}}^2 \cdot {\lambda _C}^3\) |
Ball Lightning |
Plasma |
Magnetic Moment |
Surface Charge |
\(ball = {e_{emax}}^2 \cdot {\lambda _C}^2 \cdot {F_q}^3\) | \(plsm = {e_{emax}}^2 \cdot {\lambda _C}^2 \cdot {F_q}^2\) | \(magm = {e_{emax}}^2 \cdot {\lambda _C}^2 \cdot {F_q}\) | \(sfch = {e_{emax}}^2 \cdot {\lambda _C}^2\) |
IEUA9 |
Charge Acceleration |
Charge Velocity |
Charge Length
(Charge Displacement) |
\(IEUA9 = {e_{emax}}^2 \cdot {\lambda _C} \cdot {F_q}^3\) | \(chac = {e_{emax}}^2 \cdot {\lambda _C} \cdot {F_q}^2\) | \(chvl = {e_{emax}}^2 \cdot {\lambda _C} \cdot {F_q}\) | \(chgl = {e_{emax}}^2 \cdot {\lambda _C}\) |
IEUA13 |
Charge Resonance |
Current |
Charge |
\(IEUA13 = {e_{emax}}^2 \cdot {F_q}^3\) | \(chrs = {e_{emax}}^2 \cdot {F_q}^2\) (also ecup) |
\(curr = {e_{emax}}^2 \cdot {F_q}\) | \(chrg = {e_{emax}}^2\) |
Electric Units B
Obverse Units |
|||
OEUB1 | OEUB2 | OEUB3 |
Specific Charge |
\(OEUB1 = \frac{{{\lambda _C}^3}}{{{e_{emax}}^2 \cdot {F_q}^3}}\) | \(OEUB2 = \frac{{{\lambda _C}^3}}{{{e_{emax}}^2 \cdot {F_q}^2}}\) | \(OEUB3 = \frac{{{\lambda _C}^3}}{{{e_{emax}}^2 \cdot {F_q}}}\) | \(spch = \frac{{{\lambda _C}^3}}{{{e_{emax}}^2}}\) |
OEUB5 | OEUB6 | OEUB7 |
Charge Distribution |
\(OEUB5 = \frac{{{\lambda _C}^2}}{{{e_{emax}}^2 \cdot {F_q}^3}}\) | \(OEUB6 = \frac{{{\lambda _C}^2}}{{{e_{emax}}^2 \cdot {F_q}^2}}\) | \(OEUB7 = \frac{{{\lambda _C}^2}}{{{e_{emax}}^2 \cdot {F_q}}}\) | \(chds = \frac{{{\lambda _C}^2}}{{{e_{emax}}^2}}\) |
OEUB9 | OEUB10 | OEUB11 |
Charge Radius |
\(OEUB9 = \frac{{{\lambda _C}}}{{{e_{emax}}^2 \cdot {F_q}^3}}\) | \(OEUB10 = \frac{{{\lambda _C}}}{{{e_{emax}}^2 \cdot {F_q}^2}}\) | \(OEUB11 = \frac{{{\lambda _C}}}{{{e_{emax}}^2 \cdot {F_q}}}\) | \(chgr = \frac{{{\lambda _C}}}{{{e_{emax}}^2}}\) |
Inverse Units |
|||
IEUB1 |
IEUB2 | IEUB3 | Charge Density |
\(IEUB1 = \frac{{{e_{emax}}^2 \cdot {F_q}^3}}{{{\lambda _C}^3}}\) | \(IEUB2 = \frac{{{e_{emax}}^2 \cdot {F_q}^2}}{{{\lambda _C}^3}}\) | \(IEUB3 = \frac{{{e_{emax}}^2 \cdot {F_q}}}{{{\lambda _C}^3}}\) | \(chgd = \frac{{{e_{emax}}^2}}{{{\lambda _C}^3}}\) |
IEUB5 |
IEUB6 |
Current Density | Electric Flux Density |
\(IEUB5 = \frac{{{e_{emax}}^2 \cdot {F_q}^3}}{{{\lambda _C}^2}}\) | \(IEUB6 = \frac{{{e_{emax}}^2 \cdot {F_q}^2}}{{{\lambda _C}^2}}\) | \(cdns = \frac{{{e_{emax}}^2 \cdot {F_q}}}{{{\lambda _C}^2}}\) | \(efxd = \frac{{{e_{emax}}^2}}{{{\lambda _C}^2}}\) |
IEUB9 |
IEUB10 |
Magnetic Field Intensity | IEUB12 |
\(IEUB9 = \frac{{{e_{emax}}^2 \cdot {F_q}^3}}{{{\lambda _C}}}\) | \(IEUB10 = \frac{{{e_{emax}}^2 \cdot {F_q}^2}}{{{\lambda _C}}}\) | \(mfdi = \frac{{{e_{emax}}^2 \cdot {F_q}}}{{{\lambda _C}}}\) | \(IEUB12 = \frac{{{e_{emax}}^2}}{{{\lambda _C}}}\) |
Electric Field Units
Obverse Units |
|||
OEFU1 | Varying Electric Field |
Electric Field |
Specific Charge |
\(OEFU1 = \frac{{{\lambda _C}^3 \cdot {F_q}^3}}{{{e_{emax}}^2}}\) | \(vefd = \frac{{{\lambda _C}^3 \cdot {F_q}^2}}{{{e_{emax}}^2}}\) | \(efld = \frac{{{\lambda _C}^3 \cdot {F_q}}}{{{e_{emax}}^2}}\) | \(spch = \frac{{{\lambda _C}^3}}{{{e_{emax}}^2}}\) |
OEFU5 | Charge Temperature | Charge Sweep | OEFU8 |
\(OEFU5 = \frac{{{\lambda _C}^2 \cdot {F_q}^3}}{{{e_{emax}}^2}}\) | \(chgt = \frac{{{\lambda _C}^2 \cdot {F_q}^2}}{{{e_{emax}}^2}}\) | \(chgs = \frac{{{\lambda _C}^2 \cdot {F_q}}}{{{e_{emax}}^2}}\) | \(OEFU8 = \frac{{{\lambda _C}^2}}{{{e_{emax}}^2}}\) |
OEFU9 | Charge Acceleration | Charge Velocity |
Charge Radius |
\(OEFU9 = \frac{{{\lambda _C} \cdot {F_q}^3}}{{{e_{emax}}^2}}\) | \(chga = \frac{{{\lambda _C} \cdot {F_q}^2}}{{{e_{emax}}^2}}\) | \(chgv = \frac{{{\lambda _C} \cdot {F_q}}}{{{e_{emax}}^2}}\) | \(chgr = \frac{{{\lambda _C}}}{{{e_{emax}}^2}}\) |
OEFU13 | Charge Resonance | Charge Frequency | Charge |
\(OEFU13 = \frac{{{F_q}^3}}{{{e_{emax}}^2}}\) | \(crsn = \frac{{{F_q}^2}}{{{e_{emax}}^2}}\) | \(chgf = \frac{{{F_q}}}{{{e_{emax}}^2}}\) | \(chrg = \frac{1}{{{e_{emax}}^2}}\) |
Inverse Units |
|||
IEFU1 |
IEFU2 | IEFU3 | Charge Density |
\(IEFU1 = \frac{{{e_{emax}}^2}}{{{\lambda _C}^3 \cdot {F_q}^3}}\) | \(IEFU2 = \frac{{{e_{emax}}^2}}{{{\lambda _C}^3 \cdot {F_q}^2}}\) | \(IEFU3 = \frac{{{e_{emax}}^2}}{{{\lambda _C}^3 \cdot {F_q}}}\) | \(chgd = \frac{{{e_{emax}}^2}}{{{\lambda _C}^3}}\) |
IEFU5 |
IEFU6 | IEFU7 | Electric Flux Density |
\(IEFU5 = \frac{{{e_{emax}}^2}}{{{\lambda _C}^2 \cdot {F_q}^3}}\) | \(IEFU6 = \frac{{{e_{emax}}^2}}{{{\lambda _C}^2 \cdot {F_q}^2}}\) | \(IEFU7 = \frac{{{e_{emax}}^2}}{{{\lambda _C}^2 \cdot {F_q}}}\) | \(efxd = \frac{{{e_{emax}}^2}}{{{\lambda _C}^2}}\) |
IEFU9 | IEFU10 | IEFU11 | IEFU12 |
\(IEFU9 = \frac{{{e_{emax}}^2}}{{{\lambda _C} \cdot {F_q}^3}}\) | \(IEFU10 = \frac{{{e_{emax}}^2}}{{{\lambda _C} \cdot {F_q}^2}}\) | \(IEFU11 = \frac{{{e_{emax}}^2}}{{{\lambda _C} \cdot {F_q}}}\) | \(IEFU12 = \frac{{{e_{emax}}^2}}{{{\lambda _C}}}\) |
IEFU13 |
IEFU14 | IEFU15 | Charge |
\(IEFU13 = \frac{{{e_{emax}}^2}}{{{F_q}^3}}\) | \(IEFU14 = \frac{{{e_{emax}}^2}}{{{F_q}^2}}\) | \(IEFU15 = \frac{{{e_{emax}}^2}}{{{F_q}}}\) | \(chrg = {e_{emax}}^2\) |
Inertial Units A
Obverse Units |
|||
Light |
Photon |
Rotation |
Vortex |
\(ligt = {m_e} \cdot {\lambda _C}^3 \cdot {F_q}^3\) | \(phtn = {m_e} \cdot {\lambda _C}^3 \cdot {F_q}^2\) | \(rota = {m_e} \cdot {\lambda _C}^3 \cdot {F_q}\) | \(vrtx = {m_e} \cdot {\lambda _C}^3\) |
Power |
Energy |
Angular Momentum |
Moment of Inertia |
\(powr = {m_e} \cdot {\lambda _C}^2 \cdot {F_q}^3\) | \(enrg = {m_e} \cdot {\lambda _C}^2 \cdot {F_q}^2\) | \(angm = {m_e} \cdot {\lambda _C}^2 \cdot {F_q}\) (also h) |
\(minr = {m_e} \cdot {\lambda _C}^2\) |
1. Shock Frequency |
Force |
Momentum |
Torque |
\(lint = {m_e} \cdot {\lambda _C} \cdot {F_q}^3\) | \(forc = {m_e} \cdot {\lambda _C} \cdot {F_q}^2\) | \(momt = {m_e} \cdot {\lambda _C} \cdot {F_q}\) | \(torq = {m_e} \cdot {\lambda _C}\) |
Irradiance |
Surface Tension |
Intensity |
Mass |
\(irrd = {m_e} \cdot {F_q}^3\) | \(sten = {m_e} \cdot {F_q}^2\) | \(ints = {m_e} \cdot {F_q}\) | \(mass = {m_e}\) |
Inverse Units |
|||
IIUA1 | IIUA2 | IIUA3 | IIUA4 |
\(IIUA1 = \frac{1}{{{m_e} \cdot {\lambda _C}^3 \cdot {F_q}^3}}\) | \(IIUA2 = \frac{1}{{{m_e} \cdot {\lambda _C}^3 \cdot {F_q}^2}}\) | \(IIUA3 = \frac{1}{{{m_e} \cdot {\lambda _C}^3 \cdot {F_q}}}\) | \(IIUA4 = \frac{1}{{{m_e} \cdot {\lambda _C}^3}}\) |
IIUA5 | IIUA6 | IIUA7 | IIUA8 |
\(IIUA5 = \frac{1}{{{m_e} \cdot {\lambda _C}^2 \cdot {F_q}^3}}\) | \(IIUA6 = \frac{1}{{{m_e} \cdot {\lambda _C}^2 \cdot {F_q}^2}}\) | \(IIUA7 = \frac{1}{{{m_e} \cdot {\lambda _C}^2 \cdot {F_q}}}\) | \(IIUA8 = \frac{1}{{{m_e} \cdot {\lambda _C}^2}}\) |
IIUA9 | IIUA10 | IIUA11 | IIUA12 |
\(IIUA9 = \frac{1}{{{m_e} \cdot {\lambda _C} \cdot {F_q}^3}}\) | \(IIUA10 = \frac{1}{{{m_e} \cdot {\lambda _C} \cdot {F_q}^2}}\) | \(IIUA11 = \frac{1}{{{m_e} \cdot {\lambda _C} \cdot {F_q}}}\) | \(IIUA12 = \frac{1}{{{m_e} \cdot {\lambda _C}}}\) |
IIUA13 | IIUA14 | IIUA15 | IIUA16 |
\(IIUA13 = \frac{1}{{{m_e} \cdot {F_q}^3}}\) | \(IIUA14 = \frac{1}{{{m_e} \cdot {F_q}^2}}\) | \(IIUA15 = \frac{1}{{{m_e} \cdot {F_q}}}\) | \(IIUA16 = \frac{1}{{{m_e}}}\) |
Inertial Units B
Obverse Units |
|||
OIUB1 | OIUB2 | OIUB3 |
Mass Density |
\(OIUB1 = \frac{{{m_e} \cdot {F_q}^3}}{{{\lambda _C}^3}}\) | \(OIUB2 = \frac{{{m_e} \cdot {F_q}^2}}{{{\lambda _C}^3}}\) | \(OIUB3 = \frac{{{m_e} \cdot {F_q}}}{{{\lambda _C}^3}}\) | \(masd = \frac{{{m_e}}}{{{\lambda _C}^3}}\) |
OIUB5 |
Force Density fdns |
Angfular Momentum Density |
Surface Density |
\(OIUB5 = \frac{{{m_e} \cdot {F_q}^3}}{{{\lambda _C}^2}}\) | \(fdns = \frac{{{m_e} \cdot {F_q}^2}}{{{\lambda _C}^2}}\) | \(amdn = \frac{{{m_e} \cdot {F_q}}}{{{\lambda _C}^2}}\) | \(sfcd = \frac{{{m_e}}}{{{\lambda _C}^2}}\) |
OIUB9 |
Pressure |
Viscosity |
1. Rebound |
\(OIUB9 = \frac{{{m_e} \cdot {F_q}^3}}{{{\lambda _C}}}\) | \(pres = \frac{{{m_e} \cdot {F_q}^2}}{{{\lambda _C}}}\) | \(visc = \frac{{{m_e} \cdot {F_q}}}{{{\lambda _C}}}\) | \(rbnd = \frac{{{m_e}}}{{{\lambda _C}}}\) (also ldns) |
Inverse Units |
|||
IIUB1 |
IIUB2 | IIUB3 | Specific Volume |
\(IIUB1 = \frac{{{\lambda _C}^3}}{{{m_e} \cdot {F_q}^3}}\) | \(IIUB2 = \frac{{{\lambda _C}^3}}{{{m_e} \cdot {F_q}^2}}\) | \(IIUB3 = \frac{{{\lambda _C}^3}}{{{m_e} \cdot {F_q}}}\) | \(spcv = \frac{{{\lambda _C}^3}}{{{m_e}}}\) |
IIUB5 | IIUB6 | IIUB7 | IIUB8 |
\(IIUB5 = \frac{{{\lambda _C}^2}}{{{m_e} \cdot {F_q}^3}}\) | \(IIUB6 = \frac{{{\lambda _C}^2}}{{{m_e} \cdot {F_q}^2}}\) | \(IIUB7 = \frac{{{\lambda _C}^2}}{{{m_e} \cdot {F_q}}}\) | \(IIUB8 = \frac{{{\lambda _C}^2}}{{{m_e}}}\) |
IIUB9 | IIUB10 | IIUB11 | IIUB12 |
\(IIUB9 = \frac{{{\lambda _C}}}{{{m_e} \cdot {F_q}^3}}\) | \(IIUB10 = \frac{{{\lambda _C}}}{{{m_e} \cdot {F_q}^2}}\) | \(IIUB11 = \frac{{{\lambda _C}}}{{{m_e} \cdot {F_q}}}\) | \(IIUB12 = \frac{{{\lambda _C}}}{{{m_e}}}\) |
Inertial Units C
Obverse Units |
||
OIUC1 | OIUC2 | OIUC3 |
\(OIUC1 = \frac{{{m_e}}}{{{\lambda _C}^3 \cdot {F_q}^3}}\) | \(OIUC2 = \frac{{{m_e}}}{{{\lambda _C}^3 \cdot {F_q}^2}}\) | \(OIUC3 = \frac{{{m_e}}}{{{\lambda _C}^3 \cdot {F_q}}}\) |
OIUC4 | OIUC5 | OIUC6 |
\(OIUC4 = \frac{{{m_e}}}{{{\lambda _C}^2 \cdot {F_q}^3}}\) | \(OIUC5 = \frac{{{m_e}}}{{{\lambda _C}^2 \cdot {F_q}^2}}\) | \(OIUC6 = \frac{{{m_e}}}{{{\lambda _C}^2 \cdot {F_q}}}\) |
OIUC7 | OIUC8 | OIUC9 |
\(OIUC7 = \frac{{{m_e}}}{{{\lambda _C} \cdot {F_q}^3}}\) | \(OIUC8 = \frac{{{m_e}}}{{{\lambda _C} \cdot {F_q}^2}}\) | \(OIUC9 = \frac{{{m_e}}}{{{\lambda _C} \cdot {F_q}}}\) |
Inverse Units |
||
IIUC1 | IIUC2 | IIUC3 |
\(IIUC1 = \frac{{{\lambda _C}^3 \cdot {F_q}^3}}{{{m_e}}}\) | \(IIUC2 = \frac{{{\lambda _C}^3 \cdot {F_q}^2}}{{{m_e}}}\) | \(IIUC3 = \frac{{{\lambda _C}^3 \cdot {F_q}}}{{{m_e}}}\) |
IIUC4 | IIUC5 | IIUC6 |
\(IIUC4 = \frac{{{\lambda _C}^2 \cdot {F_q}^3}}{{{m_e}}}\) | \(IIUC5 = \frac{{{\lambda _C}^2 \cdot {F_q}^2}}{{{m_e}}}\) | \(IIUC6 = \frac{{{\lambda _C}^2 \cdot {F_q}}}{{{m_e}}}\) |
IIUC7 | IIUC8 | IIUC9 |
\(IIUC7 = \frac{{{\lambda _C} \cdot {F_q}^3}}{{{m_e}}}\) | \(IIUC8 = \frac{{{\lambda _C} \cdot {F_q}^2}}{{{m_e}}}\) | \(IIUC9 = \frac{{{\lambda _C} \cdot {F_q}}}{{{m_e}}}\) |
Length/Frequency Units A
Obverse Units |
||
Volume-Resonance |
Flow |
Volume |
\(dtrd = {\lambda _C}^3 \cdot {F_q}^2\) | \(flow = {\lambda _C}^3 \cdot {F_q}\) | \(volm = {\lambda _C}^3\) |
1. Radiation Dose |
1. Sweep |
Area |
\(temp = {\lambda _C}^2 \cdot {F_q}^2\) |
\(swep = {\lambda _C}^2 \cdot {F_q}\) | \(area = {\lambda _C}^2\) |
Acceleration |
Velocity |
Line |
\(accl = {\lambda _C} \cdot {F_q}^2\) | \(velc = {\lambda _C} \cdot {F_q}\) | \(line = {\lambda _C}\) |
Resonance |
Frequency |
|
\(rson = {F_q}^2\) | \(freq = {F_q}\) |
Inverse Units |
||
ILFUA1 | ILFUA2 | ILFUA3 |
\(ILFUA1 = \frac{1}{{{\lambda _C}^3 \cdot {F_q}^2}}\) | \(ILFUA2 = \frac{1}{{{\lambda _C}^3 \cdot {F_q}}}\) | \(ILFUA3 = \frac{1}{{{\lambda _C}^3}}\) |
ILFUA4 | ILFUA5 | ILFUA6 |
\(ILFUA4 = \frac{1}{{{\lambda _C}^2 \cdot {F_q}^2}}\) | \(ILFUA5 = \frac{1}{{{\lambda _C}^2 \cdot {F_q}}}\) | \(ILFUA6 = \frac{1}{{{\lambda _C}^2}}\) |
ILFUA7 |
ILFUA8 | Wave Number |
\(ILFUA7 = \frac{1}{{{\lambda _C} \cdot {F_q}^2}}\) | \(ILFUA8 = \frac{1}{{{\lambda _C} \cdot {F_q}}}\) | \(wavn = \frac{1}{{{\lambda _C}}}\) |
Orbit |
Time |
|
\(orbt = \frac{1}{{{F_q}^2}}\) | \(time = \frac{1}{{{F_q}}}\) |
Length/Frequency Units B
Obverse Units |
||
OLFUB1 | OLFUB2 |
Volume-Time |
\(OLFUB1 = \frac{{{\lambda _C}^3}}{{{F_q}^3}}\) | \(OLFUB1 = \frac{{{\lambda _C}^3}}{{{F_q}^2}}\) | \(vlmt = \frac{{{\lambda _C}^3}}{{{F_q}}}\) |
OLFUB4 | OLFUB5 |
Active Area |
\(OLFUB4 = \frac{{{\lambda _C}^2}}{{{F_q}^3}}\) | \(OLFUB5 = \frac{{{\lambda _C}^2}}{{{F_q}^2}}\) | \(acta = \frac{{{\lambda _C}^2}}{{{F_q}}}\) |
OLFUB7 | OLFUB8 |
Dynamic Length |
\(OLFUB7 = \frac{{{\lambda _C}}}{{{F_q}^3}}\) | \(OLFUB8 = \frac{{{\lambda _C}}}{{{F_q}^2}}\) | \(dynl = \frac{{{\lambda _C}}}{{{F_q}}}\) |
Inverse Units |
||
ILFUB1 | ILFUB2 | ILFUB3 |
\(ILFUB1 = \frac{{{F_q}^3}}{{{\lambda _C}^3}}\) | \(ILFUB2 = \frac{{{F_q}^2}}{{{\lambda _C}^3}}\) | \(ILFUB3 = \frac{{{F_q}}}{{{\lambda _C}^3}}\) |
ILFUB4 | ILFUB5 | ILFUB6 |
\(ILFUB4 = \frac{{{F_q}^3}}{{{\lambda _C}^2}}\) | \(ILFUB5 = \frac{{{F_q}^2}}{{{\lambda _C}^2}}\) | \(ILFUB6 = \frac{{{F_q}}}{{{\lambda _C}^2}}\) |
ILFUB7 |
ILFUB8 | Scalar Wave |
\(ILFUB7 = \frac{{{F_q}^3}}{{{\lambda _C}}}\) | \(ILFUB8 = \frac{{{F_q}^2}}{{{\lambda _C}}}\) | \(sclw = \frac{{{F_q}}}{{{\lambda _C}}}\) |